Facts to Know:

Powers of Complex Numbers:
$$f(x) = x^{n}$$

 $f(-e^{i\theta}) = -e^{in\theta}$

Roots of Unity: { complex numbers
$$\xi$$
: $\xi^2 = 1$ = 1 = 1 roots of unity.
Solving $z^2 - 1 = 0$

Examples:

1. Find the nth roots of unity.

$$\{z: z^{\Lambda}=1\}$$
 $z=rc^{i\Theta}z^{\Lambda}=r^{\Lambda}e^{i\Theta \Lambda}$
 $|z|=e^{i\Theta}z^{\Lambda}=r^{\Lambda}e^{i\Theta \Lambda}$
 $|z|=e^{i\Theta}z^{\Lambda}=r^{\Lambda}e^{i\Theta \Lambda}$
 $|z|=e^{i\Theta}z^{\Lambda}=e^{i\Psi \pi}z^{\Lambda}=e^{i\Psi \pi}z^{\Lambda}=$

$$2^{n} = e^{-i\Theta n} = 1 = e^{-iQ n}$$
 $0 = \frac{2\pi i k}{n}$ for some $k \in \mathbb{Z}$
 $0 = \frac{2\pi i k}{n}$ for some $k \in \mathbb{Z}$
 $0 = \frac{2\pi i k}{n}$ for some $k \in \mathbb{Z}$
 $0 = \frac{2\pi i k}{n}$ for some $0 = \frac{2\pi i k}{n}$
 $0 = \frac{2\pi i k}{n}$ for some $0 = \frac{2\pi i k}{n}$
 $0 = \frac{2\pi i k}{n}$ for some $0 = \frac{2\pi i k}{n}$
 $0 = \frac{2\pi i k}{n}$ for some $0 = \frac{2\pi i k}{n}$
 $0 = \frac{2\pi i k}{n}$ for some $0 = \frac{2\pi i k}{n}$
 $0 = \frac{2\pi i k}{n}$ for some $0 = \frac{2\pi i k}{n}$
 $0 = \frac{2\pi i k}{n}$ for some $0 = \frac{2\pi i k}{n}$
 $0 = \frac{2\pi i k}{n}$ for some $0 = \frac{2\pi i k}{n}$
 $0 = \frac{2\pi i k}{n}$ for some $0 = \frac{2\pi i k}{n}$

greens of lem by reductors of 24

2. Sketch the 2nd, 3rd, 4th, and 6th roots of unity.













